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Goal: Develop a specification-centered testing framework 
to automatically generate test cases for critical systems

Key Innovation:
• Use model-checker as test-case generation engine
• Test generation techniques independent of the software 

artifact (requirements, design model, code)

Challenges:
• Identify a collection of test data coverage criteria for 

formal, state-based specifications
• Determine a suitable translation and abstraction from a 

formal specification to the input language of a model 
checker

• Obtain concrete test-cases from abstract models
• Augment specification-based tests with test cases 

generated from implementation to enhance coverage

NASA Relevance:
• Increased quality and productivity of mission-critical 

software

Accomplishments to date:
• A framework for test-generation using model-checkers
• A set of criteria to drive test-case generation
• Domain abstraction techniques for software models
• Experiments on small models from avionics domain
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Schedule:
• Investigate applicability to larger requirement models of 

flight control logic (Fall 2002)
• Java Pathfinder model-checker enhancements for test-

generation from code (Summer-Fall 2002)
• Approaches to instantiate test-cases with concrete data 

(Fall-Spring 2003)
• Minimizing test-suite size for a given set of criteria 

(Spring-Summer 2003)
• Evaluation and Wrap-up (Fall 2003)
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Specification Centered Testing
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Specification Centered Testing
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Generating the Tests
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Progress …

• Past year …
� Formalism for generating test-cases from state-based 

specifications [ECBS 01/HASE 01]

� Test criteria in terms of temporal logic [ECBS 01]

� Framework for specification-centered testing [ICSE ATV 01]

� Domain abstraction for software specifications [FSE 01]

• Ongoing …
� Case-studies to investigate

� Coverage obtained on implementations by test-cases obtained 
from specification

� Scalability of the approach to large models

� Test cases from code using JPF
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Some preliminary results
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• A case-study on a small avionics model (ASW)
� RSML-e specification translated to NuSMV
� Condition coverage criteria expressed in LTL
� Generated 49 test cases (out of 78 properties)
� Varying coverage of implementations in Java (produced by students)
� Coverage metrics obtained using a Java coverage tool JCover*

* Thanks to Man-Machine Systems for providing the tool free for our research project
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• Two critical questions
� Can we do this on large models?

� Approach being evaluated on models of flight-control logic from 
Rockwell Collins

� Can we do this on code?
� JPF is being used currently to generate test-cases from code obtained by 

translating RSML-e models

� Results from first case-studies indicate a positive answer to both.

• Other issues of interest:
� Instrumenting Nimbus to support coverage metrics
� Instantiating test-cases with concrete data values
� Environment specification for generating realistic test cases
� Determining pass/fail status for test cases
� Minimizing test suite size

Issues to be tackled… 


